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Abstract

Robust inference of causal models: applications to spontaneous
activity of zebrafish brain
by Francesca MASTROGIUSEPPE

During my internship I focused on the problem of inferring causal models from finite
observational data. The possibility of learning descriptive and intuitive models from
raw and huge datasets has become more and more relevant in the current framework
of amagzing technological possibilities. The theoretical framework of causal modeling
sets the possibility of learning graphical causality relationships among variables, by

exploiting the presence of peculiar patterns, called v-structures.

If a correct list of conditional independencies among all the variables is provided, tra-
ditional constraint-based algorithms, like the well-known PC algorithm, are known to
give back an exact result. In practice, however, conditional independencies are inferred
from statistical tests on real data, and this kind of approach often results in not sat-
isfying performances. An alternative procedure, proposed by our group, combines the
constraint-based approach with a Maximal Likelihood environment, in which entropy
evaluations are performed in order to quantitatively estimate the reliability of each
single sub-structure. Because of the possibility to include at each iteration only the
structures with a high score, our 30off2 algorithm is expected to be more robust against

the noise arising from finite dataset.

In the report, this approach is used to analyze datasets recording the single-cell res-
olution activity of the zebra-fish brain. Data, recorded by the G. Debrégas group at
UPMC, derive from fluorescence imaging performed through a genetically encoded cal-
cium indicator. In our analysis, we first focus on limited neuronal structures, whose
connectivity is object of specific investigations from the scientific community. In a
second step, we exploit the same approach in dealing with full-brain data, on the
two-dimensional scale dictated by the scanning laser sheet technology. Inference tests
allow us to test in a rigorous way precise pattern of communication which have been
hypothesized through anatomical knowledge or raw data analysis. Furthermore, it
gives access to more general features of zebra-fish brain connectome, its main paths

for information transmission and its set of topological parameters.
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Chapter 1

Inference of causal graphs

1.1 Causal graphs

1.1.1 Introduction

Understanding cause-effect relationships between variables is the central aim of many
fields in science, which deal with physical, biological, behavioral and social phenomena.
The aim of many sciences, indeed, is to understand the mechanism by which variables
take their own value, and predict the values they would assume if some manipulations

are made on the natural system.

Usually, experimental intervention is used to find these relationships. In many settings,
however, experimental interventions are infeasible because of time, cost or ethical con-
straints. More often, only observations, i.e. non-experimental, huge data sets are
available. In the last 30 years, the typology of available data in science has changed a
lot. Thanks to amazing experimental setups, and largely improved storage techniques,
a huge amount of raw data is now available for many phenomena of science. Extrap-
olating simple phenomenological models from this new class of data, by using only

traditional methodologies, could become a task of insurmountable difficulty.

It is not a coincidence, then, that during the same years, causal models have been tested
and formalized. Causal relationships have the undeniable merit of being intuitive, since
they provide a descriptive analysis of observational data. The theoretical framework
which we are going to introduce in this chapter sets the possibility to learn simple

models starting from some probability distributions, in which causal relationships can
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be hidden. In the following we will consider, therefore, the problem of inferring causal

information from observational data.

From a historical point of view, functional mod-

els are the first methods through which causal re- Traffic accident | | Heavy rain

lationships have been encoded. In those models,

events are represented by variables, whose value is Traffic jam .
determined, in an exact way, by functional equa-

tions, which encode some more intuitive causal re- S
lationships. An approach which results to be more

handy from an algorithmic point of view suggests Ficure 1.1: Graphical representa-
to focus on the inference of graphical structures tion of the causal model for the phe-
(graphs), in which relationships between causes nomenon “being late for school”.
and effect are encoded by directed edges. In our applications, vertices will stand for
the discrete variables of the problem, which can assume values in a fixed range. Figure

1.1 shows an over-simplified example of this kind of models.

Suppose that two variables are given; in this toy model we will consider “traffic jam”
(X) and “heavy rain” (Y). In our simplified view, the variables can assume only the
values TRUFE or FALSE. An observational dataset provides us information about the
weather and the traffic situation, which are recorded every morning. The only kind
of information that we can extract from this framework is the mutual information
between variables I(X,Y"). In other terms, we can statistically decide if X and Y show
some kind of probabilistic dependency or not.

If we discover that X and Y show dependency, such that I(X,Y’) > 0, we will know
that some relationships can exist between the two phenomena, but we will never be
able to decide whether the rain is the cause of traffic, or the other way round, or maybe
X and Y stand for the effects or a common cause which was not directly observed.

How to teach a machine, then, to recognize proper relationships of causality?

Ordinary causal reasoning in human beings often relies on temporal schemes: a cause
is always thought to precede the effect. Temporal mechanisms, however, can lead to
mistakes: swallows are known to reach cold regions a few days before the arrival of
spring, but they do not cause the spring to come. Furthermore, time-series datasets are
not always available. Very often, scientists deal with datasets which gather together
many data points which have been registered during the same experimental session, or

in a few different moments.



Chapter 1. Inference of causal graphs 3

The kind of approach we will use in this study does not rely on temporal patterns.

As a first step, we will focus on small systems constituted at least by three variables,
which are considered to be the smallest subset about which some causal models can
be assessed. We will exploit again tests of independency, which now can be simple (as

before), or conditioned on some external group of variables:

Definition 1.1. Being A, B and C three subsets of the variables X1,...,Xn, on which
the joint probability distribution P is defined, we say that A and B are conditionally
independent given C, or (A L B|C)p, if and only if:

P(alb,c) = P(alc) (1.1)

where a,b and ¢ are respectively the values assumed by the subsets A, B and C.

In other words, once the value of C is fixed, the value of B does not influence the
knowledge we had about A. When C = (), we recover the usual definition of indepen-

dency.

The previous definition turns out to be exceptionally instructive for a particular class
of causal sub-structures, as we will explain in the following. Consider the triplet of
variables “heavy rain”, “traffic jam” and “late for school”. In our final model, they are
connected through a causality flux which originates from the first variable and finally
reaches the third one. We expect then to see those two variables to show dependency
in the data.

Suppose now to fix the value of the intermediate one: suppose to access data and check
whether there is traffic in the town. This knowledge makes rain and our phenomenon
(being late for school) completely independent.

An opposite behavior can be underlined in the triplet “traffic accident”, “heavy rain”
and “traffic jam” where the last variable is recognized to be a common effect of the
first two. Here, by fixing the common effect (conditioning on it), we are creating a
dependency between the causes. Indeed knowing that an accident happened, in our
naive and simplified example, does not change our knowledge about the weather. In
other words, we expect the two causes to behave as independent variables. Suppose
then to discover that a traffic jam formed in the town. The awareness of the accident
will significantly change the probability estimation that we previously had about the
rain. In poor words, variables have become dependent. This kind of triplet is called a

v-structure, and is schematized in picture 1.2.
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Definition 1.2. A v-structure (or vee-structure [1], or unshielded collider[2]) is a triple
of nodes X7, Xo and X3 such that in the graph G: X; — X5 and X3 — Xo, but X;

and X3 are not adjacent.

As a second, more explicit example, we focus on the v-structure
created in 1.1 by the variables “traffic jam”, “getting up up late”
and “late for school”. Before conditioning on the value of the third
variable, we would say that the first two are completely indepen- e

dent. Discovering that “late for school”=FALSE, however, would

decrease the probability of having traffic jam and getting up late FIGURE 1.2: A v-
in a dependent way. In particular, if we ascertain the presence of structure.
traffic jam, we expect the probability of getting up late to become smaller and smaller.
In the other way round, when “late for school”=T RU E, we expect the same two prob-
abilities to increase. If we know that “traffic jam” =T RU F, then the probability of also
getting up late will decrease with respect to the non-conditioned value: the appearance
of one of the two causes tends to exclude the other one. Conditioning on being late is

then creating a fictitious anti-correlated behavior among independent variables.

V-structures will represent the leading element of the inference process, since it turns
out that when the appearance of such a conditional dependency arises, the causal
sub-graph which can be inferred is unambiguously a v-structure. The same possibility
does not hold for the first triplet of variables we analyzed. All the oriented, open
triplets which are not v-structures are colled non-v-structures. They are characterized
by one of the three shapes shown in 1.3, and by the vanishing of a dependency when a
conditioning on its vertex is performed. As we will characterize in chapter 2 through
entropy calculation, it is not possible to distinguish from independency tests which
shape among the three is assumed by the graphical model which generated the data.
This feature will limit considerably our possibility of inference. It is possible, indeed,
that perfect performances of inference algorithms will be able to give back only partially
oriented graphs, when the presence of v-structures is not enough to induce orientation

on all the edges of the network.

X1 X3 X1 X3 X1 X3
FIGURE 1.3: The three equivalent forms of

X X X
3 2 2 non-v-structures.
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1.1.2 Bayesian networks

In the following, we will introduce a few elements which help to formalize the starting
intuition we presented so far. Because of the nature of causality, in our applications
we will deal with directed graphs. If you imagine to remove all the arrowhead from
the edges of the graph, then you will get the undirected graph which is called skeleton.
A path in the graph is said to be directed if the orientations of all the involved edges
point in the same direction. If the starting and the ending point of the route coincide,

then the direct path is said to be a direct cycle.

When the directed graph contains no cycles, we will say that it is acyclic. In the
following, we will focus on DAGSs, that is, on Directed Acyclic Graphs. Indeed, this
typology of structures lies at the heart of the definition of the versatile and efficient

Bayesian networks.

A Bayesian Network can be seen as a convenient representation of a given probability
distribution. Suppose you want to characterize N variables through their joint dis-
tribution, P(x1,...,zn). A graph representation of the distribution P can represent a
huge advantage if each X; depends just on a small number of variables. Those variables

are called Markovian parents for the variable Xj.

Definition 1.3. Given X; € V, the variables in the set PA; C V are said to be
Markovian parents of X; if PA; is the minimal set of predecessors of X; that makes

X, independent of all its others predecessors in a defined arbitrary ordering.

In other words, thanks to Markovian parenthood, it is possible to get the following key
simplification:
P($1|x1,,xz_1) :P(xl\pal) (12)

Notice that for each distribution P the chain rule of conditional probabilities holds:

P(x1,..,xN) = HP(a:iLrl, e Ti1) (1.3)

By exploiting the Markovian property in 1.2, it becomes possible to obtain the following

decomposition for P:
P(xy,...,xn) = | [ Plailpas) (1.4)
i

In 1988 Pearl shown that if P is always strictly positive for all the possible configura-

tions, then the sets of Markovian parents for all the variables are unique [3].
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In order to get from them the Bayesian graphical model, imagine to draw the N
variables as nodes of a graph. Then you have to draw arrows between them in such a
way that each Markovian parent is linked by an outgoing arrow with its son X;. You
will get a DAG G which is called Bayesian network for P.

The special relationship between P and G encoded by the graph will be called Markov
compatibility.

Definition 1.4. Given a DAG G, for each distribution P which satisfies the decom-

position 1.4, we will say that P and G are Markovian compatible.

The compatibility between the probability distribution and its Bayesian graph turns
out to be a far richer relationship. It is possible to provide a completely equivalent
characterization of compatibility, which is enriched of a more intuitive interpretation.
Here we will use blindly the concept of d-separation between variables in a graph G.
If a subset of variables A is said to be d-separated from B, then we will denote, in
formulae: (A L B|C)¢g. The following result holds [4]:

Theorem 1.5. Consider the three subsets of VA, B and C. If A and B are d-separated
by C in the DAG G, then A and B are conditionally independent, given C, in all the
distributions P which are compatible with G. In formulae: (A L B|C)g = (A L
B|C)p.

We notice that the converse is not always true. That is, it is possible that there are
some accidental independencies encoded in P which cannot be read in G. They are

typically due to some fine tuning of the underlying parameters.

Now it is necessary to explicit the proper definition of d-separation, which makes the
theorem 1.5 to hold. We will say that A and B are d-separated by C' if and only if
all the paths starting from a vertex X € A and ending in Y € B are d-separated by a

vertex Z € C. In particular:
Definition 1.6. A path from 7 to j is said to be d-separated by a set C' if and only if
it contains one of this two sequences:

1. i = v — jor a fork i + v — 7, such that v is in C, or

2. an inverted fork i — v < j, such that v, and all its descendants, are not in C.
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We can try to have an insight into this property through intuition. Suppose that
arrows are encoding a causal relationships between variables. By fixing the value of
one of the vertices v in (', in case 1 we are blocking the flux the information which
flows from ¢ to j, and then from A to B. Instead, condition 2 requires that C, in G,
does not contain any common effect of ¢ and j. By fixing the common effect, indeed,
we justified the creation of some dependencies between the two causes which were, in

principle, completely independent. This is what happens, typically, in v-structures.

The role of the v-structures is of great importance in DAG recovering. They encode
all the essential information which is inferred from the probability distribution, and
they turn out to be the same in all the DAGs which are compatible with a given P
(Markov equivalent graphs). Indeed, the following theorem holds:

Theorem 1.7. Two DAGs are Markov equivalent if and only if they have the same

skeleton and the same set of v-structures, that is, the same pattern [5].

Because of the limitations in inference due to the presence of non-v-structures, it
looks natural that the best an inference algorithm can do with observational data, is

to recover the full equivalence class to which the true causal explanation belongs (a
CPDAG: Completely Partially Directed Acyclic Graph).

1.1.3 Inference of causal networks

Suppose now you do not have any pre-printed causal model, but you want to find a
probable one by just looking at observational data, which encode the state of each
variable during the experiment. That is, you have access only to an empirical joint
probability distribution.

You would like to extract the true causal model, which consists of the CPDAG G,

whose links express causality relations.

In practice, we will require the final model to be stable with respect to data. This
corresponds to require the causality graph G to be compatible with the distribution
P, but also the distribution P to be compatible with G. In raw words, we will assume
that the inverse of theorem 1.5 is valid also. Suppose that you can extract from data a
list M of conditional independency statements ranging over all the variables. We will

adopt the following definition:
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Definition 1.8. The inferred graph G is said to be the stable if and only if the set of
conditional independencies entailed by G is exactly the same set M which can be be

extracted from data.

A stable model is also called a complete causal explanation (2], or a faithfull one [6].
The existence of a stable model is used as hypothesis in many algorithm whose task
is to reconstruct the graph compatible with the causal model. In facts, it was proved

that the distributions which admit a stable graph are indeed the wide majority [7].

1.2 PC algorithm

The PC algorithm relies on a solid theoretical background. It is possible indeed to
prove that, given an ideal oracle of structural independencies which is not sensitive
to the disturbances of the experimental noise, this algorithm gives as output an exact

result, provided that a stable underlying DAG exists.

The main idea is that, since the final DAG model should encode the right conditional
independencies, then by the latter we can try to infer some aspects of the former.
Indeed, the algorithm first infers a complete list of conditional independencies between
the variables. In practice, the oracle is replaced by a statistical test, which needs to
be provided with a significance level a. The arbitrariness in the typology of the test

and in the used value of « are at the origin of the major limitations of PC.

The PC algorithm takes as input the inferred structural independencies structure and
provides as output the mazimally oriented graph (or CPDAG), which encodes the
highest level of inference you can reach about G. The mazimally oriented newtork
contains all the oriented edges which are present in all the complete causal explanations
of M. It is possible, indeed, that there exist more than one causal explanation for M.
However, as we saw, they all share the same set of v-structures, and then they belong

to the same class of equivalence.

The PC algorithm acts in three steps:

S1:
Start from a complete, undirected graph with nodes V. Get an undirected graph G by
applying the following rule: A is adjacent to B if and only if there does not exist a set
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S CV\{A, B} such that, in M, (A L B|S). If such S exists, then set Sep(A, B) = S.

In facts, what the authors Spirtes and Glymour suggested to do [8], is to test the
existence of the set S by starting from the empty set and then progressively increasing
its cardinality by including more and more neighbours of the vertices A and B. The
cardinality of this set is then bounded by the sum of the two degrees of the nodes with
higher number of edges in the graph. This trick makes possible to run the algorithm

in polynomial time on sparse graphs.

Step 1 gives back the skeleton of the inferred graph. In the hypothesis that our distri-
bution is stable, it is possible to prove that the skeleton found is exact. Indeed, it is

possible to prove the following lemma [1]:
Lemma 1.9. Let M be an exact independency list. A DAG G is compatible with M
if and only if:
1. the edge AB is in G if and only if, VS, (A L B|S)n;
2. the v-structure zﬁ% is in G if and only if AB and BC are in G but not AC,
and ¥S, if (A L C|S)n, then B ¢ S.

The second point of lemma 1.9 suggests moreover a second step which turns out to be

useful in the orientation procedure, and involves v-structures.

S2:
Start from the skeleton of G. For each pair of non-adjacent nodes A and C see if there is
a node B which is not in Sep(A,C). In this case, orient the edges xﬁ and ?C’

In facts, because of noise, it can happen that PC tries to reconstruct v-structures which
contradict each other about the orientation of one edge. In this case, the version of
the R package we used (pcalg), simply takes into account the last inferred orientation.
This is the maximum effort of which PC is capable, having no kind of score which can
test the statistical faithfulness of the two reconstructed structures. The third step,
finally, extends the orientations of the pattern by applying a few orientation rules. It
is possible to prove, indeed, that those laws encode the only choice that we can make,
because orienting in the opposite direction would lead to the creation of loops or new

v-structures, which were not inferred by the algorithm [2].
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FIGURE 1.4: The four rules used by PC algorithm in order to propagate orientations

[2].

S3:
Start from the pattern of G. While G has some undirected edges, orient as many edges as
you can by applying the rules encoded in picture 1.4.

A theorem [2] ensures that, in the case of an ideal oracle of independencies, the result
given back by steps 1,2 and 3 is the true maximally oriented graph.
Moreover, PC is a quite efficient algorithm. For fixed graph connectivity, its complexity

increases polynomially in the number of vertices N [8].

1.3 Constraint based and Bayesian methods

Probably PC is the most well-known example of constraint based search algorithms.
Typically, the constraint based methods, taking as input an oracle of conditional in-
dependency which acts in the population of variables, return a representation of the
Markov equivalence class of the causal graph. However, as it is possible to discuss,

they present some advantages and some disadvantages.

One main advantage of constraint-based algorithms are their very fast performances;
moreover, they can be easily generalized to the case when some latent variables are
assumed to exist outside from the recorded dataset. Their output is a unique, clear
graph, which codifies all the equivalence class of the true model. Moreover, if the algo-
rithm is provided of an ideal independencies estimator, it can rely on strong theoretical

arguments which ensure the correctness of the output.

Their main disadvantage is that constraint-based algorithms, in fact, show bad accu-
racy and robustness in dealing with real world data. At small sample size, indeed,
tests of conditional independency are characterized by low precision, especially when
conditioning on many variables is needed. In the case of huge dataset, instead, statis-

tical evaluation can be extremely slow.
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Structural independencies, moreover, are identified according to an arbitrary statis-
tical significance level. A very problematic issue is that results from contraint-based
approaches depend on the arbitrary ordering of the variables in the dataset. Further-
more, small mistakes made in the early part of the algorithm can propagate and lead
to later mistakes. Constraint-based methods, eventually, do not provide a quantitative
measure of reliability about the result, neither any indication of how much reliable the

output model is compared to the next best one.

The more reasonable alternative to this approach is to develop an efficient way of im-
plementing score-based methods, which can assess in a quantitative way the likelihood
that our data sample is generated by a given graph. In this case, algorithms associate
a score to each possible model, measuring the closeness between graph and data and
the level of essentiality (e.g. the number of free parameters) of the model.

In the limit of large data sample, it is expected that the DAG with the highest score
G belongs to the equivalence class of the model which underlies the data.

The practical definition of the score to be used has some arbitrariness. In the Bayesian
approach, for example, the quality measure is essentially the probability of having a
given network, by knowing the measured database. Let D indicate the dataset, in order

to compare the probabilities of two DAG structures GG; and G, you can calculate:

P(G1,D)
P(Go|D) ~ E(GxD] ~ P(Gy, D) '

Then what you need is just to compute the joint probabilities P(G, D).

Since the number of possible DAGs is super-exponential in the number of vertices, even
with a modest NV it is not possible to examine each graph and test its compatibility with
the probability distribution. It is possible to prove, indeed, that if each vertex has more
than 2 parents in G, then the problem results to be NP hard [9]. Some heuristic search
procedures have then been developed, for selecting at most a polynomial number of
different structures; one example consists of the algorithms based on the hill-climbing
method [10] [11].



Chapter 2

The 30ff2 algorithm

2.1 Theoretical background

The purpose of our algorithm is to combine the two strategies we discussed so far,
keeping the more advantageous features of each approach. By computing a likelihood
score for all the local structures, the algorithm performs a process of optimization on
small scale, eventually constructing a unique output model. The Maximum Likelihood
framework, in which the algorithm is built, circumvents the necessity to set an arbitrary

significance threshold in independencies identification.

The conception and the implementation of the 3off2 algorithm involves all the group
of prof. Isambert (UMR 168, Institut Curie); the project started before my arrival but
is still developing. A first paper, which concerns only the skeleton reconstruction part

(see further), is currently under review [12].

2.1.1 A Maximum Likelihood approach

The maximum likelihood method is a well-known criterion exploited in the process of
statistical inference of the free parameters in a given model. In order to briefly recall
this methodology, suppose we have a sample of x1, x3,... x, repeated observations of a
variable X. We suppose that they fit a given family of probability distribution f and
we want to find the best choice possible for the parameter (or the vector of parameters)

6.

12
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Then we suppose to fix § and construct the probability of observing the outcome sam-
ple, by multiplying all the terms coming from the independent trials: pg(x1, x2,...2y) =
[T po(x;). If you look at the same quantity as a function of the parameter 6, being
the outcome of the trials fixed, you get a function £(0|x1, z2,...z,) which is called like-
lihood function. For practical purposes, it can be convenient to deal with its logarithm,

which is called log-likelihood function:
[(0|x1, x2,...ty) = In L(O|x1, 22, ...70) = Zlogpg(xi) (2.1)
i=1

The Maximum Likelihood (ML) principle assumes that the most reliable value for the

parameter 6 is the one which maximizes the quantity [(0|x1, 2, ...zy).

The likelihood £(G) for a model G can also be expressed in terms of cross entropy

between the probability distribution emerging from data and the one encoded in G.

Definition 2.1. In information theory, if X is a discrete variable, if two distributions

of probability e(z) and p(z) are given, their cross entropy H is defined as: H(e,p) =

— > . e(x)logp(x).

By introducing the single-distribution entropy function H(e) = > e(z)loge(x), and
the Kullback-Leibler divergence (or Relative Entropy) Dy (e||p), it is straightforward
to see that the following simple relation holds: H(e,p) = H(e) + Dxr(e||p).

In the following, we will assume that e is the experimental distribution, emerging from
data, while p is the one encoded in the model to be tested. It is clear that in this case,
Dpr is the only non constant term with respect to the distribution p which has to be
tested. In particular, it is possible to show that the minimization of this single term

provides the same result for 6 which is given by the ML criterion.

Theorem 2.2. Let e(x) be the experimental probability distribution extracted by data,
and p(z) a generic one. Then the distribution p is the ML estimator if and only if:

p = argminy{D(e||p)} (2.2)

In the following we will exploit the alternative form of the likelihood function we

introduced in the previous reasonings:

L(G) = e M (ep) (2.3)
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where n is the number of independent observational data points. At this stage we
extend our analysis to N variables {X;} = {X1, X»,..., Xn}, which will become the
nodes of the graph we want to infer. We suppose that each variable takes value
x;. If the model we are assuming is compatible with a DAG G, then for p it must
hold: p({z;}) = Hf\i 1 €(zi|pa;). This factorization on the single node propagate to the

likelihood function too, since:

N

N
H(e,p) = =YY el{wi})loge(wilpa;) = Y H(wilpai) (2.4)

i=1 x; i=1

In 2.4 we used the notion of conditional entropy for two variables X,Y: H(X|Y) =
H(X,Y) - H(Y) =

ijy pxy (z,y)log px|y (z]y). Eq. 2.3 will allow us to compare two alternative graphi-
cal models G and G’ by taking the ratio of their likelihood functions. The two models
differ for the parental set predicted for each variable Xj:

LG') o~ i [H(XG| PA) = H(X| PAy)] (2.5)

By applying this result to open triplets of nodes X, Y and Z, one can get an interesting

characterization of v-structures in terms of entropies.

Suppose your graph consists of an isolated v-structure V with basis XY . Then by
applying the definition of mutual information I(X;Y) = H(X)+ H(Y) — H(X,Y),

since X and Y have no parents in Vxy, you get:

LVxy) = e MHEZIXY)+HHO+HY)] . o=nlH(XY,Z2)+1(X5Y)] (2.6)

A non-v-structure NVxy can assume one of the three forms in picture . For all of them,
by using the following equality for conditional entropy: H(XY) = H(X|Y) + H(Y)
you get:

L(NVxy) = e MHX)THZIX)+HY|Z)] — —n[H(X|Z)+H(Y|2)+H(2)]

— o HX YD) HI(X3Y]2)] (2.7)

In the last step we recognized the conditional mutual information between X and Y
given Z: I(X;Y|Z) =H(X|Z)+H(Y|Z)— H(X,Y|Z). By computing 2.5 for a v and

a non-v model you end up with a multi-variate mutual information, and in particular,
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with the three-point one. Indeed:

LWxy) _ alixy)-1(xiv|2)]
L(NVxy)

ent(X;Y;Z) (28)

where [(X;Y;Z2) = H(X)+H(Y)+H(Z)-H(X,Y)-H(Y,Z)-H(Z,X)+H(X,Y, Z).
In general, k-variate mutual information, with k > 3, are interesting objects. Indeed,
while the two-points I(X,Y) is always larger than 0, they can be either positive or
negative.

In this case, the sign of I(X,Y,Z) provides an order of magnitude of the relative
likelihood of the v-structure versus non-structures.

When I(X;Y;Z) < 0 v-structures are characterized by a larger probability of being

present in the true model.

Furthermore, we notice that I(X;Y;Z) is a symmetric function with respect to its

variables. Then, whatever basis is chosen for the open structure, the same result for

the likelihood ratio holds. It follows that we cannot conclude the inference process by

simply looking at I(X;Y; Z).

To this end, however, it is possible to easily show that the most probable basis is the

one characterized by the lower value of mutual information between its nodes, since:
Lxy) e mXY)

LOVyz)  enlViZ) (2.9)

It is straightforward to show that the same holds for non-v-structures. Two-point
and three-point information, then, are enough to infer the true structure of the triplet

according to the ML principle.

2.1.2 Generalized v-structures

The issue of inferring a real, large graph requires some generalizations. In this section
we will extend the results for simple triplets to larger structures which will be called

generalized.

As a first stage, we fix a couple of non-adjacent nodes X and Y. We consider then the
set {U;}xy of all the upstream nodes. Each upstream node has at least one direct and
oriented connection to X, Y or another upstream node. In the following, we will not

specify, if not strictly necessary, the pedex XY.
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FIGURE 2.1: Brief resume of the found results. Pictures A, B, C and D refer to
isolated structures; E, F, G and H to the generalized ones.

Suppose to have a third vertex Z which does not belong to the {U;} set. This is possible
only if all the connections which exist between Z and X, Y and {U;} point towards Z.
We will say that Z is the apex of a generalized v-structures. In all the other cases, Z
has at least one edge oriented in the opposite direction, than it is part of the upstream
nodes. In this case, we will say that nodes form a generalized non-v-structures. If
you want to check, like the PC algorithm does, the conditional independency between
X and Y, all the Z belonging to generalized non-v-structures should be considered.
Indeed, it is likely that part of the information traveling from X to Y passes through
them.

It is quite straightforward to compute the likelihood functions also in this case, by ap-

plying 2.3 to the most general case. Here we will denote with VV and NV the generalized
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structures.

L(WVxy) = e~ MHZIXYAUD+H(X{UHD+HY{Ui})] — o—n[H(X,Y,Z{Ui})+1(X;Y {Ui})]

(2.10)
L(NVxy) = e~ HXIZ{UN+HY|Z{Ui})+H(Z{Ui})] — —n[H(X,Y,Z{Ui})+1(X;Y|Z,{Ui})]
(2.11)
In the same way you get the likelihood ratio:
LINVxy) _ —ni(xvizl{U:}) (2.12)

L(NVyz)

where we introduced, in analogy with 2.8, the three-point conditional mutual infor-
mation: I(X;Y;Z{w}) = (X;Y{U;}) — [(X;Y|Z,{U;}). A significantly positive
I(X;Y; Z|[{U;}) means, then, that a generalized non-v-structure is more likely that a v
one. Also in this case, eventually, we end up with a symmetric quantity, which cannot
tell us how to set the basis of the inferred structure. Again, we have to look for the
couple with lower mutual information, in this case conditioned on {u;}:

L(Vxy) L(NVxy) e &Y WUixy)

LVyz) - L(NVyz) - ol (Y:Z[{Ui}y ;) (2.13)

2.2 The main idea

The 30ff2 algorithm starts from a fully connected graph and, like PC, tries to remove
one edge at time by looking at the conditioning independencies between X and Y.

In this paragraph we will characterize the same process in terms of mutual information.
This new perspective will suggest a proper way of choosing, at each step, a conditioning
set S. We suppose to start by computing [(X;Y). This quantity is always non-
negative, and can be typically larger than zero even if X and Y are not in direct causal
relationship. Information can be indeed mediated by all the nodes which are present

on the pathways existing between the two variables.

As in PC, we are looking for some mutual conditional independencies, that is, we are
looking for the set S such that I(X;Y|S) ~ 0 up to a certain significance level. Here
the task is to build this set in a proper way, by including the more robust patterns:

the ones which are more likely to contribute to communication between X and Y.
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Then, once X and Y have been fixed, you peek up iteratively all the possible third
nodes Z; and you measure the reliability of these subgraph to be generalized v or non-
v-structures, by assigning them a score which is based on their likelihood. Then you
select only the reliable non-v-structures and you test the mutual information between
the two original nodes, by conditioning on the new one. If Z; has been chosen properly,
you have in facts reduced the mutual information between X and Y. By including at
each step a new Z; in S, you can find that conditioning on it it is sufficient to get
I(X;Y|Z) ~ 0, or not. In the first case, you include Z; in the upstream nodes of
the edge XY, and you include a good candidate in S. If X and Y are causally non-
connected in the true model, at a certain point you expect to have a set S large enough

to block all the information pathways between the two nodes.

More formally, we imagine to start from the definition of three-point mutual informa-

tion, and then apply it recursively:

I(X;Y) = 1(X;Y: Z1) + I(X; Y| Zy)
=1(X;Y;2)+ I(X;Y; 22|20 ) + ... + I( XY Z8H{Zitv—1) + I(X5 Y {Zi b v)

(2.14)
Inverting the formula we get:
I(X5Y{Zikn) = I(XGY) = I(X5Y5 20) = I(X5 Y5 20| 20) — o = I(X Y5 Zn{ Zib v 1)
(2.15)

The quantity on the l.h.s. is the one we want compare with 0. By constructing the
set {Z;}n, ideally you are, starting from the two-point mutual information, taking off
some contributions from I(X,Y), on the r.h.s.. This is why the name we propose for
the algorithm is 30ff2. In our perspective, then, we would like to collect all the Z; with
positive three-points terms, that is, the one which are likely to form a non-v-structure

which can participate to information transmission.

2.2.1 The score attribution

In order to get a proper score for each triplet of nodes, we will combine two quantities:
the normalized probability of forming a generalized non-v-structures, and the one that

the base of the more probable pattern is exactly XY. We use here the likelihood
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functions computed before:

L(NVxy)
L(NVxy) + L(Vxy)
1
1 +exp{—nl(X;Y; Z|{U;})}

Pyv(X,Y,Z) =
(2.16)

L(NVxy)

L(NVxy) +£(vaf) +L(NVzx) (2.17)

T | e{=nl(GZI{UD} | exp{—nI(V:Z{U: D}
exp{—nl(XG;Y U N} 1 expl-nl(X;Y [{U: )}

Pp_xy(X,Y,Z) =

Score computation requires the knowledge of the upstream nodes of X and Y. This
set is built from scratch during the execution of the algorithm, such that the ranking
of each triplet evolves continuously in time.

The score should reflect the likelihood that the triplet X,Y,Z is a non-v structure of
basis XY. This is possible if and only if both the conditions expressed for 2.16 and

2.17 are realized. Then we will define the rank as:
r(Z; XY) =min[Pyy(X,Y, Z), Pp=xy(X,Y, Z)] (2.18)

In order to remove each edge in a robust way, we define the score of XY by taking the
more informative Z:

R(XY) = mZaX[T(Z; XY)] (2.19)

2.3 Corrections: the Minimum Description Length prin-

ciple

When dealing with small databases, it is known that the purely ML framework adopted
up to now to rank structures can be inaccurate [13].

Coding theory suggest a new typology of measure which is coherent with the Minimum
Description Length (MDL) principle. The MDL principle reflects the Occam’s Razor
or some principle of parsimony in choosing the best model; it was firstly formulated
by Rissanen in 1978 [14]. In his view, the best model is the one which can give the

shortest description of data.

A natural possibility would be then to assume the Description Length (DL) equal to

the Kolmogorov descriptive complezity, which measures the quantity of computability
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resources needed to specify a given object. Unfortunately, in algorithmic information
theory, it can be shown that the descriptive complexity is not a computable quantity.
Rissanen proposed then to enrich the DL approach of a new interpretation based on
coding theory, such that the new measure can be thought as the number of binary
digits needed to code the data, in order to transmit them.

The coding interpretation relies on the Shannon’s Source Coding Theorem [15].

In the simplest case, when a family of parametrized distribution is given and the best
set of parameters has to be chosen, it is easy to show that the MDL measure coincides
in facts with the ML one. In more complex cases, MDL introduces a cost for each
degree of freedom, which are finally included in the model only if their introduction
significantly improve the fitting with data; otherwise, they are considered to be redun-
dant. As a result, a simpler model is preferred.

In order to introduce the measure which naturally derives from the MDL principle,
let us set a few definitions. We will consider the usual set of N variables X;, which
can assume one among 7x; possible values. Let D be the used dataset, consisting of n
independent points. Let {U;} be the set of upstream nodes of X and Y, and let [[; r,

be the number of their possible instantiations.

Definition 2.3. The description length L(G, D) of the graphical model G given the
database D is given by:

L(G, D) = log P(G) — nH(G, D) — %k; logn (2.20)

where k is the number of degrees of freedom of the model G and H is the cross entropy

between the true distribution and the one encoded by G.

The first term of 2.20 encodes the prior knowledge we can impose on the inference
process.

Since it is a measure of the uncertainty in the model, the entropy term (the one we used
up to now) tends to decrease by adding nodes and degrees of freedom in the graph.
The third term, instead, introduces the cost for the complexity of the model. What we
expect is that a model involving many degrees of freedom results to be preferred on a
simpler one only if its cross entropy is much smaller than the one of the other model.
It is possible to prove that the DL measure has the same property of the Bayesian one

in the limit of infinite data samples [16].
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Since we did not assume any prior knowledge, by using the DL measure the likelihood

function becomes:
E/(G) — efnzlj-vzl H(Xi|PAi)7%klogn (221)

Here we will derive the new threshold, predicted by the MDL principle, that will be
used in order to quantitatively assert if I(X;Y|{u;}) ~ 0. This step will circumvent
the need for an arbitrary statistical value as in the PC case.
The discovery of the mutual conditional independency would allow us to remove the
edge between vertices X and Y. Then we will assume that G is the complete graphical
model, while G’ is the one in which XY has been removed. It is immediate to show
that: £(G) 1

— (XY {UiH) =5 (ka—kgr) logn (2.22)

LG

Indeed, I(X;Y|{U;}) is the price you have to pay for removing the edge. Here if we
set kg = Kmaa, then kgr = Kkpae — (rx —1)(ry —1) [, rv, [16]. Then the new graph is

more likely than the second one if:
I(X; YU} < x (rx —1)(ry — 1) I | ry, logn (2.23)
) ) m X Y i ; 108 .

which is the condition we will assess during the skeleton reconstruction.

The orientation procedure is led by the presence of v-structures. At the beginning, 3off2
collects all the open and closed triplets of the inferred graph. Among the latter, it is
possible to distinguish the v and the non-v-structures through a significantly positive

or negative value of their three-point mutual information.

Since for them you can for sure infer the orientation, you look for the most reliable
among the v-structures in the list and you orient its edges. Then you look at all the
triplets (open and closed ones) which are involved in the procedure. If possible, you
orient all the involved triplets, taking care that the process is not creating any oriented
loop in the graph. If it is found that the propagation eventually contradicts itself or
some previous structures with a higher score in the list, the original v-structure is

considered to be unfaithful and it is discarded.
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2.4 Performances

A brief summary of the performances of the skeleton reconstruction of the 3off2 al-
gorithm can be found in [12]. Several quality parameters have been evaluated: the
precision Prec = TP/(TP + FP), the recall Rec = TP/(TP + FN), and the F-score
Fs = (14 8%)Prec x Rec/(3%Prec + Rec), for the values of the parameter 3 equal to
lLor1/21%.

The tests have been performed by the PhD student S. Affeldt on benchmark causal
graphs containing from 20 to 70 nodes, as a function of the dimension of the sample n.
Typically 30off2 reaches very good levels of precision for a small value of n, if compared
with other methods like PC, ARACNE, or Bayesian search. The value of the recall,
instead, seems to grow slower; in complexity, however, the F-scores result very often

to be the highest one among all the compared algorithms.

2.5 Pseudo-code

TP (True Positives) stands for the number of edges which are present in the true causal model
and are correctly inferred by the algorithm; F'P (False Positives) is the number of reconstructed edges
which are not present in the underlying graph; F'N (False Negatives) is the number of links which
should be inferred, being part of the true model, but they are missing in the inferred graph.
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Algorithm 1: 30off2 Skeleton Reconstruction

In:  observational data of finite size N

Out: skeleton of causal graph G

1. Initiation Start with complete undirected graph forall the links xy do

if I(z;y)<(ry —1)(ry —1)log N/2N then

‘ zy link is non-essential and removed separation set of zy: Sep,, = 0

else
find the most contributing node z neighbor of z or y and compute 30ff2
rank, R(xy;z|0)

end

end
2. lteration while 3 zy link with R(zy; z|{u;}) > 1/2 do
for top link xy with highest rank R(xy;z|{u;}) do
expand contributing set {u;} < {u;} + 2
update contributing nodes and ranks of links zz & yz: R(zz; 2'|[{u}}) &
R(yz; 2"[{u}})
if I(z;yl{wi})<(ry—1)(ry—1) [, 1, log N/2N then
zy link is non-essential and removed separation set of zy:
Sep,, = {u;}
else
find next most contributing node z neighbor of z or y and compute
new 3off2 rank of zy: R(zy; z|{u;})
end
sort the 3off2 rank list R(xy; z[{u;})
end

end
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Algorithm 2: 30off2 Orientation Reconstruction
In: skeleton of causal graph G
Out: oriented graph G’

1. Identify the triplets (x;, x, ;) that are unshielded (x;not — xj, x; — xk, ) — ;) or
closed (x; — xj,x; — Tk, Tp — X5)

2. For each unshielded triplet, estimate its probability of being a generalized
v-structure or non v-structure, and assign a score corresponding to this probability

3. Order the unshielded triplet in decreasing order of their score

4. For each non oriented or partially oriented unshielded triplet, apply the following
orientation rules:

o v-structure = (x; — xy) and (z; — xy)

e non v-structure = if(x; = v — x; (resp., x;y — v < x5) ), do x; — T — T
(resp. x; <= xp < xj)

5. For each closed triplets, if the triplet has 2 non converging oriented edges, then
orient the 3" edge to avoid directed cycle.




Chapter 3

Zebra-fish brain imaging

3.1 Introduction

Here we introduce the causal analysis performed on a biological dataset, extrapolated
by imaging the whole brain of zebra-fish at larval stage.

Experimental data are provided by the research group of G. Debregeas and R. Cande-
lier, working at the CNRS/UPMC Jean Perrin Laboratory (Paris, France) [17].

Traditional methodologies for neural activity recording are based on in wivo single
electrode measures. These techniques give access, with high temporal resolution, to
the electrical signal emitted by a single neuron. Using micro-arrays of electrodes,
moreover, it is possible to record the neural activity of some hundreds of cells at the
same time. However, since the number of neurons composing the brain of an adult
animal is of several order of magnitudes larger, this methodology cannot give access
to interactions between cells in different brain areas; moreover, it does not allow the
detection of ensembles of neurons which are strongly functionally related.

In order to study the activity of a larger number of neurons at the same time, one
possibility is to optically monitor the fluctuations of Ca™™ quantity in the cells [18].
This kind of signal is said to be intrinsic, since it does not reflects the simple electrical
one, and it derives from secondary dynamics which affects the neuronal cell during the

spiking process.

The action potential (AP) is mainly due to the sudden depolarization of the cellular
membrane. When the neuron is at rest, the channel proteins on the membrane are

closed. In this condition, the density of some charged ions, like Ca and Na, is much

25
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larger outside than inside the cell. The electrical AV between the membrane and the
environment is stable, while it is suddenly lowered during the short duration of a spike

(~ 1 ms). Depolarization causes a large variation in the cytoplasmic free calcium.

If some particular dyes are present inside the cell, it is possible to record with a camera
the fluorescence activity linked to the Ca™™ presence. Those special molecules, called
calcium indicator, can bind the Ca™ ions, and they are provided with a fluorescent

protein which makes possible the in vivo optical recording.

3.2 Zebra-fish brain imaging

Because of its transparency, one animal which results to be suitable for this kind of
imaging approach is the zebra-fish in its larval stage. Since in this stage the fish is very
small, moreover, its brain (typically 200 x 500 x 1000 pm) consists only of few thousands
of neural cells. Nevertheless, the brain in the larval stage is sufficiently developed, and
it is able to respond to simple stimuli, like contact, light and movement.

A transgenic line of fishes, whose genome codes spontaneously for the presence of a
calcium indicator in cells, was engineered. The genetically encoded dye chosen in this
study is the GCaMP3, which has been developed in Hughes Medical Institute, Ashburn
(USA) [19]. During the imaging experiment, the larvae used as sample are completely

paralyzed, allowing for a single neuron resolution over 30 min or longer.

The optical apparatus used to detect the fluorescence, based on Selective-Plane Illu-
mination Microscopy (SPIM), allows to superate the limits in recording imposed by
point-scanning imaging techniques, whose low acquisition speed sets, in fact, a limita-
tion on the number on neurons which can be simultaneously observed. Recording is
performed through the lateral illumination of the larva with a thin laser-sheet. Differ-
ent parts of the larva, then, are illuminated and they are observed at the same time.
Fluorescence recording can access to neural activity with a single-cell resolution, at
least in the non-marginal areas of brain. In the data we will deal with, neurons are

monitored with a frequency of 10 Hz, and the total imaging time is of 40 minutes.

3.2.1 Data processing

The main disadvantage of the SPIM method is given by the fact that it deals with

fluorescence, which is a more complex signal with respect to the electrical one. Neural
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FIGURE 3.1: (a) The experimental setup at the Jean Perrin Laboratory [17]. (b) The

relationship between AP (top) and the fluorescence signal (down). Those measure-

ments were conducted with one of the earlier calcium indicator which was available in

1999 [20]. Depolarizations are inducted by an external current and the fluorescence
signal is detected.

spikes (or action potentials: AP), indeed, have a fixed amplitude of ~100 mV. The
fluorescence signal, instead, can have a varying amplitude, and has a slow rising and
decreasing behavior, which makes very difficult the reconstruction of single spikes in

low and high frequency trains.

Here we briefly resume the refinement procedure that scientists of Jean Perrin lab-
oratory applied on their data. First, a segmentation algorithm identifies the differ-
ent regions of interest corresponding to individual somata. Given F'(t) the fluores-
cence signal for a single neuron, the second step is to extract the relative output,
dF/F = (F(t) — bsiow)/bsiow- bsiow is the value of the basement line of each neuron,
when it shows no activity. Picture 3.1 shows the expected shape for a fluorescence sig-

nal caused by a single neural spike. The spike lasts about 1 ms, while the fluorescence
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activity up to ~ 1s. The shape is the one of a double exponential f(t) o< e* e, with
two characteristic times which depends on the performances of the calcium indicator

that you are using. In our case, \,= 100 ms and \g= 600 ms [21].

In order to remove the long-tail effect given by the calcium indicator, the signal is
processed with a Wiener filter (linear deconvolution) which takes into account also
a Gaussian noise. After the filter process, the signal becomes more symmetric and
more pronounced, but it is not possible to reduce further the width of the peaks.
The temporal resolution of our data 7, then, can be measured as the full width half

maximum of peaks. With our experimental setting, 7 ~ 600 ms [22].

3.3 The binary fluorescence signal

Together with the analog signal obtained with this procedure, the group of the Jean
Perrier Laboratory provided us also the relative binary dataset. In the binary case, for
each experimental point, neurons are said to be switched on, if their signal is equal to

1, or switched off, if their signal is equal to 0.

The group provided us six databases, which correspond to the cutting of the analogical
signal with different values of threshold, ranging from 3 to 7. Data with low threshold
presents a lot of small strings of 1, consisting of 2-5 experimental points. These very
short signals disappear if they apply an higher threshold, and they are assumed to
derive also from the background noise. This assumption is consistent with the temporal
resolution dictated by the calcium dye, which is estimated to be around 600 ms. In
facts, by looking at the length distribution of strings of activity, it is possible to notice
a large part of the signal whose duration ranges from 10 to hundreds of experimental
points (see figure 3.2). In some cases, like in the hindbrain oscillating area of brain,

that we will analyze deeper in the following, neural signals last even longer.

By adopting a higher threshold to cut data, together with small strings of noise, also
some longer strings of activity, of duration ~ 1 - 2 s, disappear. It seems possible,
then, that together with noise, we are throwing aways some short signals.

This problem could be due to the amplitude of the fluorescence signal generated by the
dye, which is not constant in time, neither before nor after the application of the data
processing filters. For the calcium indicator used in this analysis, peaks amplitude
has been seen to depend on the recording condition (single cell in vitro, or layer of

packed cortical cells...) and on the neuron species (see figure 3.2). Furthermore, the
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FIGURE 3.2: (a) Length distribution for all the strings of activity in the dataset.

The result is then multiplied for the string length, in order to get a measure of

the probability of having a given length by considering one single active point. (b)

Performances of the GCamp3 calcium indicator in detecting single AP and small

trains of activity [19]. The b trial refers to the isolated neuron in a, while the d one

refers to a neuron belonging to the layer of cortical neurons shown in c. The thick
line underlines the average signal.

signal amplitude is strongly related to the number of action potentials they correspond
to, as the study in picture 3.2 shows. One important consequences is that there can
be, in data, some signals of small amplitude (probably related to trains of short time
duration) which in principle we want to detect. The risk to avoid is to lose them by

cutting the analog signal by using a high threshold (see figure 3.3).

Then it looks reasonable to deal with the dataset corresponding to the lowest values of
threshold, and then try to get rid of the very short trains (shorter than the temporal
resolution), which are thought to be noise. This task has been performed by using
a smoothing filter which relies on a sliding window of width equal to 7 experimental
points (700 ms, a bit larger than the temporal resolution). Inside the window, a
majority rule is performed: if the number of active points is larger than 3, you save a 1
in another string, in the place corresponding to the middle of the window. Otherwise,

you save a 0. This results in a non-drastic changing in data, which nevertheless can be
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(a) (b)

FIGURE 3.3: (a) Analog signal for three neurons picked at random in the hind-brain

oscillator zone (see further). The y scale has been chosen to be the same for three of

them. The amplitude of the signal varies for different neurons, and also within the

signal of a single cell. (b) Analog signal of the neuron # 2 of 3.3a compared with the

relative binary one obtained by setting the threshold to 3, 4.5 and 7. Already with an

intermediate value of threshold it is possible to notice that some short peaks of the
analog signal are not recorded in the binary one.

necessary, since clustering of neurons will requires logical OR, operations of the single

neuron signals, which could result in a rapidly propagating noise.

3.4 Inferring brain connectivity

It is widely believed that brain activity relies on a fine balance between functional
segregation and integration of information [23]. The first feature to be historically
underlined was segregation. This concept was proposed in a first, raw fashion by
phrenologists; during the XIX century, later experiments in dogs and monkeys revealed
a crucial dependency between brain areas and their specific functions.

However, within few years, it became clear that, given the presence of anatomical
communication channels between segregated zones, it was not possible to map uniquely
each area of cortex to a specific task. Today, we have widely accepted that each cortical
structure, which often codes for a single function, may in facts involve many specialized

areas, whose interaction is mediated by signal integration.

Functional segregation have been firmly proved by brain imaging; evidences of inte-
gration are harder to collect. Two main approaches have been developed in the recent
years, which aim at looking at available data from different perspectives.
The analysis of functional connectivity aims at reconstructing the structure of statis-
tical dependencies (mainly correlations) between remote neural activities.

A more powerful tool is given by effective connectivity, which refers to the influences
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that some neural structures impose on some others, creating dynamical relationships
of coupling and causality. While functional connectivity can then be extracted directly
from data, functional connectivity has to be inferred and it requires the assumption of

a specific model.

3.4.1 Causality inference over time

Within this framework, a widely accepted stream of causal modeling is the one based
on time relationships, in opposition to the one based on Bayesian dependency graphs
we analyzed so far. This alternative kind of approach is called dynamical causal mod-
eling (DCM) [24]. In this dynamical framework, the first step is to set the relationship
between the observed response y(t), an exogenous input u(t) and some random fluc-
tuations v. The behavior of y reflects the hidden dynamics of the true physiological
state x(t):

&= f(x,u)+w (3.1)
Y= g(:c,u) +wv

The approach of DCM consists in inverting or fitting this set of equations given some
experimental data.

The first possibility is to linearize the equations in 3.1 by using Taylor approximations.
You obtain a new family of models whose parameters can be found through auto-
regression procedures. This approximation lies at the heart of the Granger causality
approach, which has been widely used in treating fMRI imaging data [25]. A signal X
is said to be the Granger-cause of Y if the past values of X contain information which

helps predicting the value of Y.

The graphical modeling we will adopt, instead, deals with static functional relationships
between variables, and then it can be used also when time series are not available. Of
course, since our methodology ignores time, it is limited to discovering conditional
independencies in DAGs, and it cannot deal with causal feedback loops. This could in
principle create problems in dealing with data from brain, since it is widely accepted

that brain behaves like a recursive, cyclic structures.
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Inference results

4.1 Neuron clustering

The aim of our analysis is to apply the causality inference procedure to large numbers
of neurons, while typically the 30ff2 algorithm can run in a reasonable amount of time
only when the number of variables is not larger than 100 - 200. Then it has been
fundamental to develop a clustering method which allows to deal with small brain
regions as a unique variable. This procedure will be applied, during the analysis,
on different scales. Since we want to derive local structures which capture the mean
features of fluorescence activity, we based the cluster procedure on spatial closeness

and neural affinity.

With this purpose, we exploited a hierarchical clustering algorithm (hclust, provided
in the R environment), by providing it a modified distance matrix. It consists of a
matrix of size N x N, where N is the number of neurons which had to be clustered.
We imposed a arbitrarily maximal spatial distance d,., and we analyzed each couple
of neurons. If they are found not to be neighbours, according to distance threshold
which was set, their cell in the matrix is set to -1, otherwise the value of correlation
among their signal is computed.

The output of the hclust algorithm is the hierarchical tree (a dendrogram) which en-
codes affinity between groups of neurons. According to the dendrogram it is possible
to get the single clusters by cutting it through the setting of a reasonable value for the
number of clusters.

While using the algorithm, the agglomeration rule to be used has to be decided. In-

deed, hclust starts by considering each point as an isolated leaf; iteratively it associates

32
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FIGURE 4.1: Example of the den-
drograms provided as output from
the hclust algorithm (here: complete
option). On the y axis distance be-
tween elements is reported. By cut-
ting the structure at a given fixed
distance you build the single clus-
ters. This dendrogram refers to the
Y e 7 hindbrain oscillator area (see next

paragraph).

86

Height

05

:—‘
=
18

|

each leaf with the closest cluster which has been formed in the previous steps. By
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setting the agglomeration rule, we chose the measure of distance between groups of
variables.

If you choose the complete option, distances will be computed as the maximum distance
between the selected object and all the objects inside the cluster. The single option,
on the other side, will pick up the nearest neighbour inside the cluster. Its distance
from the fixed object is then compute. Other well-known methods are the average one,
which measures an average distance between the fixed point and all the variables in

the cluster, and the Ward one, which tries to give back clusters of similar dimensions.

The clustering procedure is based on the data smoothed by the filter we described in
the previous chapter. When the clusters are ready, their signal is collapsed together in

a unique one, through some logical operation among the binary signals.

4.1.1 Clustering rule for signals

In principle we would define a cluster of neurons to be active if a significant fraction
of its cells is emitting a fluorescence signal. In practice, to set an exact and reasonable

value for this fraction can lead to some difficulties.

Our purpose would be to define a final signal which fully characterizes the cluster
as single variable. By adopting a small fraction, as threshold, the risk is to end up
with the most active clusters completely switched on through all the duration of the
experiment.

On the contrary, by requiring the activity of a large part of cells, it is not difficult
to obtain a complete absence of signal after the clustering. Neural activity inside
each cluster, indeed, is not homogeneous, and is characterized by a certain number of

neurons with lower activity with respect to the other.
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The second problem arises when dealing with large cluster, which can be the case, for
example, in treating the inference problem from the full brain. It is quite clear, then,
that the chosen threshold should change according to the dimension of the cluster and

the kind of behavior we expected from the analyzed cells.

4.2 Number of independent data points

In this analysis, we will test the inference algorithm 30ff2 on the zebra-fish brain data,
and we will compare the obtained results with the graph inferred by PC. One of the
main advantages of 3off2 algorithm is that it does not rely on arbitrary thresholds
for statistical significance, since the cutoff value is provided naturally within the MDL
environment. It is important, then, to have a good estimate for n, which stands for

the number of independent data points recorded in the experiment.

Our dataset contains 24000 experimental points of which, due to the time decay of the
fluorescence dye, just a fraction of them are completely independent. If we assume to
have one independent point each 7 ~ 600 ms (the temporal resolution), then we get n
= 4000 effectively independent data points. Since the value for 7 is nothing more than
an estimation, in our analysis we will allow n to fluctuate a bit around its estimated

value, in order to test its robustness.

4.3 The hindbrain oscillator

In the first part of our analysis we focused our attention on restricted groups of neurons.
We selected the brain areas about which a particular behavior has been observed during

the zebra-fish brain imaging.

The first set of neurons we looked at is located in the hindbrain of the fish, that is, in
the section of the brain which is closer to the spinal cord. It consists of two groups
of cells which seem to oscillate in counter-phase, with long period (around 20 ~ 30 s).
This behavior has been founded to be robust and well-marked in different experiments
[26], but the function of the so called hindbrain oscillator has still to be clarified.

The same structure has been individuated by the experimentalists at the Jean Perrin
laboratory (see figure 4.2). The synchronized oscillating behavior is underlined in

pictures 4.2.
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(a) (b)

FIGURE 4.2: (a) Localization of the hindbrain oscillator in the full brain of the zebra-

fish larva utilized in the experiment. We will indicate as area 1 the group of neurons

plotted in red; the blue group will be indicated with 2. The x and y scale of all

the spatial plot we will present have the number of pixels as unity of measure. (b)
Hindbrain oscillator: result of the clustering procedure.

FIGURE 4.3: (a) Analog signal of 10 neurons randomly picked up from area 1 (bottom)
and 10 from area 2 (up). (b) Average signal of area 1(red) and area 2 (green). Detail
from the last part of the full signal.

After isolating the neurons belonging to the oscillator, we clustered them in a reduced
number of points (25). In this case, given the small number or neurons involved in
the analysis, it was possible to use the stricter measure for distance between groups
provided by hclust (complete one). In picture 4.2 we show the spatial distribution
of the obtained clusters. Even if we treated together neurons coming from the two
different oscillating areas, the clustering procedure returns small structures which are
compatible with the division in the two distinct zones which are oscillating in counter-

phase.

One of the most important parameter to set in the analysis is the choice of the majority

rule needed in order to construct the signal of each cluster. In this first case, clusters
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FIGURE 4.4: Hindbrain oscillator: 30off2 inference results (n = 4000) for different
logical rules. Coloring scale: linear; blue stands for the weak edges, red for the strong
ones.

contain a small number of neurons (on average, 4), so the neuronal activity inside each
group is expected to be quite synchronized. We tried to investigate the effect of this

choice on the final result by selecting quite different rules:

e by OR rule we mean that the logical OR operation has been performed on the

signals of all the neurons inside each cluster;

e by OR 1/N rule (here N=2,3) we mean that a 1 is recorded in the final signal
only if at the same time at least a fraction of 1/N neurons is active inside the

cluster.

In picture 4.4 a comparing plot of the final results obtained by 30ff2 is shown.

The coloring code of edges in the graphs reflects the weight that the inference proce-
dure assigns to the single link. The exact quantity we used is the conditional mutual
information corrected for the MDL threshold (¢ = nI(X;Y|{U;}) — (rx — 1)(ry —
1)[1; v, logn), which can be seen as the logarithm of the confidence that the algo-
rithm has in the single edge. The color scale is linear in ¢ and is shown in the figure.
Blue colors indicate very weak strength, while the red edges should be considered as the
one with higher weight. The position of the vertices resembles the spatial distribution

of the clusters which are used as variables for the reconstruction procedure.

The three graphs show many similar features, although a small fraction of edges is
reconstructed only in some cases and some orientations are not stable. Edges with
higher weight are always inferred, meaning that for them the causality pattern inside

signals is quite robust with respect to the clustering rule. The algorithm is not able
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to infer many of the orientations in the case of the OR 1/2 rule. Since clusters are
very small, it is possible that this strict logical rule could imply the loss the part of
information which is hidden in the single neuron activity (which in this case can be
determinant). Graph coloring confirms a robust communication within each area (1
and 2), while some links which cross the two regions are present, but they are char-
acterized by low weight. The latter would be the responsibles of the synchronization
of the oscillations which has been found in the imaging. In this area of brain, indeed,
it is reasonable to expect a loopy pattern of communication between the two regions,
which in facts is observed in our results. Graphs are characterized by the presence of
many oriented loops which involve neurons of different areas. From this perspective,
since our theoretical approach does not assume the presence of this kind of structures,
one possibility for further investigations would be the analysis of hindbrain oscillator
through a DCM approach.
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FIGURE 4.5: Hindbrain oscillator: 3off2 inference results (OR rule) for different values

of n (first three graphs). Coloring scale: linear; blue stands for the weak edges, red for

the strong ones. In the last graph, we show the result provided by the PC algorithm
(o = 10719; results were found to be stable in the range 10~% — 10~10).

In a second time we tested the behavior of our algorithm by varying the number of
independent data points n, which has been estimated to be around 4000. In 4.5 the

results are shown; they turn out to be very stable.

As last comparison, we decided to test the behavior of the hindbrain oscillator through
the PC algorithm. With this purpose, we used the conservative version implemented
in the pcalgo package [6]. This more recent algorithm, which is expected to be more
accurate, attributes the orientation of each edge only after performing again all the
conditional independency test [27]. In the last element of figure 4.5 the result is shown.
PC seems to reconstruct successfully the same kind of general structures inferred by
30ff2. However, in this case, PC seems not to be able to infer many orientations
on the edges. Our analysis, which propagates orientations starting from the stablest

v-structures, seems to perform better in this case.
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4.4 The tectum-cerebellum four areas

Another sub-group of neurons which shows an interesting behavior is displaced among
two areas of the zebra-fish brain: the hindbrain and the midbrain. It has been first
identificated at the Jean Perrin laboratory and consists of 630 cells divided in four
small areas, two on the left and two in the right hemisphere of the brain. The first two
are located in the optic tectum and they reveal a fairly elongated shape, the second
two instead are characterized by a well-rounded shape and they are located in the

cerebellum, on the edge of the hindbrain (see figure 4.6).

The experimental team noticed that each of these four areas is characterized by high
values of correlation among its neurons. Moreover, they found significant average
correlation between the areas 1 and 2, 2 and 3, 3 and 4, but only a weak one between
areas 1 and 4 [22].

Then they decided to measure the probability of simultaneous activity between areas,
by extracting it from data 4.7. Some preliminary results suggested a causal model in
which the two small regions could be the apex of two v-structures: 1 — 2 < 3 and

2 — 3 <+ 4. This hypothesis motivated the causality inference analysis we performed.

600

200

(a) (b)

FIGURE 4.6: (a) Localization of the four areas of interest in the full brain of the

zebra-fish larva utilized in the experiment. The area in red will be noted as 1, the

blue as 2, the green as 3 and the violet as 4. (b) Four areas: result of the clustering
procedure.

In order to apply the clustering procedure, we kept the neurons belonging to large
areas (1 and 4) and to small ones (2 and 3) segregated. In this way, it is possible
to set autonomously the number of clusters we desire in the regions 2 and 3; this
method revealed to be necessary in order to capture the complexity of communication

at smaller scale.
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FIGURE 4.7: Probability that the
g o specified areas are emitting fluores-
cence signals at the same time, for
- . the triplets 1-2-3 (down) and 2-3-4

(up).

The total number of clusters chosen in this analysis is 35. Also in this case, given the
high granularity of clusters, it has been possible to use the complete method for the

clustering algorithm.

In figure 4.8 we report the results given by 3off2 and PC by using the OR 1/3 rule. In
this case, clusters are typically larger than before (18 neurons for cluster, on average),
and it looks reasonable that, by simply taking the logical OR between all the signals,
a noisy activity is created in the final temporal string.

Also in this case, the strongest links look to be confined inside segregated areas (here
into the two large ones, 1 and 4). The weakest edges inferred by 3off2 are the ones
which cross the four areas in the diagonal direction. Indeed they are not inferred by
PC and they are cut in 30ff2 when a lower threshold is set with n = 3000. A very weak
communication can be noticed also between areas 1 and 4. This discoveries strengthen
the hypothesis that the causality pattern in those areas is led by the 1-2, 2-3 and 3-4
pathways.

In the reported results, moreover, it is possible to recognize several simple and gener-
alized v-structures which have as vertices the areas 2 and 3.

By focusing on areas 1, 2 and 3, we underline the presence of simple v-structures of
vertices V23 and V22 (2 — 23 + 30, 7 — 22 «+ 28 ...) and generalized v-structures
which involve more than three vertices (2 — 23 — 21 +— 28, 7 — 22 <+ 23 + 30 ...).
By focusing on areas 2, 3 and 4, it is possible to notice, as example, the structures
16 — 26 < 21 and 16 — 26 < 28 + 23.

N=3000 . N=4000 @ N=5000 @ PC

FIGURE 4.8: Four zones: 30ff2 inference results (OR 1/3 rule) for different values of n

(first three graphs). Coloring scale: linear; blue stands for the weak edges, red for the

strong ones. In the last graph, the result provided by the PC algorithm (o = 10719,
results were found to be stable in the range 10~* — 10719).
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We tested the presence of the same structures by using the other logical rules which
have been exploited also for the hindbrain oscillator (OR, OR 1/2). In those cases
results appear to be less stable by changing the parameter n. In some cases it is
possible to reconstruct some v-structures only in the 1-2-3 or only in the 2-3-4 areas.
A further investigation about the robustness of the v-structures hypothesis will be
conducted on a larger scale, by seeing if it is possible or not to evidence the same local

behavior by performing the network reconstruction for the whole brain.

4.5 Full brain results

Once the standard procedure was tested on restricted areas of brain, we decided to
apply the same analysis to the totality of the neurons observed in the experimental
trial (8082 cells).

By dealing with such a large number, it was necessary to play smartly with the number
of clusters to impose and the logical rule to be used. When the number of clusters
is around 100, the number of neurons inside each group is large enough to make the
activity inside single clusters quite dis-homogeneous. In this framework, therefore,
the complete option of hclust gives back a flat dendrogram which cannot be cut in a
practical way; we decided then to exploit the less strict average method, which gives

back, in this case, a useful result.

In a first step, we dealt with 60, 80 and 100 clusters. In figure 4.9 we show the
result obtained for 60 clusters, by using the OR 1/6 rule. For the full brain results,
we preferred to set a logarithmic scale for the strength coloring in the graphs. This
choice, due to large variations in the confidence level for each edge, allow a better
visualization. It is possible to notice, among the weak links (the pink - blue ones), the
majority of the links on large scale. They create a series of lateral pathways which
connect the right and the left hemisphere of the brain. Moreover, it is possible to
notice some diagonal edges of communication, which start from the posterior part
of the brain, which is closer to the spinal cord, and spread to the lateral edges of the
anterior brain. It looks reasonable that long-scale links correspond, in reality, to chains
of short-mediated pathways which flow in the rest of the brain, below or above the plane
selected for imaging with the microscope. The strongest (red) links, instead, seem to
refer to short scale interactions, and in most cases they describe fluxes of information
which from the central areas of brain go to the periphery. In all the results that we will

show, it is possible to notice that the largest fraction of strongest links are localized



Chapter 4. Inference results 41

400 600 800 1000
I I I I

200
I

FIGURE 4.9: (a) Full brain: result of the clustering procedure. With the small red

circles we underline the position of the hindbrain oscillator and of the four areas of

interest. (b) Full brain: 3off2 inference results (OR 1/6 rule, n = 4000). Coloring
scale: logarithmic; blue stands for the weak edges, red for the strong ones.

in lateral sides of the midbrain, in the areas involving the optical tectum. As we will

show, neurons in those regions are characterized by high fluorescence activity.

Also in this case, we looked at the results obtained by setting three different values for
n (see figure 4.10). Although some very small variations can be underlined, each single
edge seem to be very stable. In the PC result, only a smaller fraction of the edges can
be oriented (around one half). The general features of the pattern, instead, can be

recognized also in this last result.

One interesting feature of 4.9 is the presence of structures which are compatible with the
two generalized v-structures we investigated in the four areas discusses in the previous
paragraph. In the graph it is possible to recognize a link from area 1 to 2 (46 — 30) and
from 4 to 3 (43 — 29). Since the small areas 2 and 3 are included in single clusters, it is
possible to observe only one edge between them. In this case the link is directed from
29 towards 30, and it is reasonable to think that it would correspond to the strongest
direction of communication. This result is not observed for rules which are stricter than
the OR 1/6 one. The same behavior has been observed in the same analysis conducted
on 80 clusters. In that case, because of the huge number of variables, a graphical

interpretation of the network becomes more difficult. By increasing the number of
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FIGURE 4.10: Full brain: 3off2 inference results (OR 1/5 rule) for different values of

n (first three graphs). Coloring scale: logarithmic; blue stands for the weak edges,

red for the strong ones. In the last graph, the result provided by the PC algorithm

(o = 1079; results are characterized by a slow increase in the number of edges with
increasing «).

clusters up to 100, the threshold rule decreases to the OR 1/5. It is reasonable to think
that, as the number of clusters increase, their inner activity becomes more and more
synchronized. In that condition, in order to keep a fair amount of information, it is
sufficient to use a stricter rule for the clustering of signals. Moreover, in picture 4.9,
it is possible to notice that clusters which contain the cells of the hindbrain oscillator
(here V16, V20, V23, V17, V24) look to be causally connected also at this larger scale.

At this stage we decided to test the choice we made about the threshold used for
the binarization. Then we performed the same kind of analysis (starting from the
application of the smoothing filter, up to the inference algorithm) on data obtained
with threshold 4.5 (see figure 4.11). In this case it seems that many of the weakest
edges inferred in the previous case disappear. This phenomenon could be due to the
small loss of information which results from adopting a fairly higher threshold, as we
suggested in the previous paragraphs. A less strict OR rule makes possible to infer a
bit larger number of weak edges.

By using the new threshold it is not possible to recognize structures which are fully
compatible with the ones we found before in the four zones, since some links between
them are missing. However, a well assessed behavior seems to be the communication

pathway from area 3 to 2, in this case included in clusters 31 and 32.

4.5.1 Most active neurons analysis

In order to better understand the consequences of the clustering procedure, we decided
to filter out the neurons which are characterized by a lower activity. It looks reasonable,

indeed, that during this procedure the silent neurons are forced to join one of the closest
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FIGURE 4.11: Full brain,

with threshold 4.5: 3off2

inference results (n =

5000).  Coloring scale:

logarithmic; blue stands

for the weak edges, red for
the strong ones.

clusters. If a proper logical OR rule is not settled, their very low signal could hide the
fluorescence dynamics of single active neurons inside each group. In map 4.12 we show
the spatial distribution of the active and the silent neurons. Active neurons seem to
be located mostly in the spinal cord, in the middle hindbrain and on the lateral edges
of the midbrain.

The activity distribution shows a single peak which turns out to be located not far
from the median of the distribution. At this value we imagined to cut the distribution,
and we kept for a further analysis only the signals belonging to the most active half of
the 8082 neurons. On this new neuronal population we performed the same procedure
of inference. In this frame it was possible to focus on a smaller number of clusters,

which enables to an easier graphical interpretation.
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FIGURE 4.12: (a) Spatial distribution of the most active neurons in the full brain

(indicated in green, blue, violet). Neurons with very weak or absent activity are

plotted in yellow and red. (b) The half of neuronal population with higher activity,
which has been considered for the further analysis.

In this case the results turn out to be a bit more robust by changing the logical rule
adopted to cluster signals (see figure 4.14). This could be due to a more homogeneous

dynamics inside each clusters, which contains now only the right tail of distribution in
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FIGURE 4.13: (a) Distribution of the activity of all the neurons. On the x axis, the

number of time points during which the neuron is active is reported (total number of

points: 24000). (b) Full brain, most active neurons: result of the clustering procedure.

With the small red circles we underline the position of the hindbrain oscillator and of
the four areas of interest.
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FIGURE 4.14: Full brain, most active neurons: 3off2 inference results (n = 4000).
Coloring scale: logarithmic; blue stands for the weak edges, red for the strong ones.

4.13.

Neurons belonging to the areas of interest (hindbrain oscillator, four areas) belong to
the fraction of active neurons. It is possible, then, to test their behavior in this new
framework where a possible source of noise has been removed. In all the results shown
in 4.14 the generalized v-structures of the cerebellum-hind brain can be recognized.
If we focus on the OR 1/5 rule, it is possible to see the edge between areas 2 and
3 (20 — 21), the two edges from 1 to 2 (30/32 — 21) and the two from 4 to 3
(31/27 — 20).

In a second time we focused on the common features of the communication patterns
emerging in the results in 4.14. By analyzing the information pathways connecting the

anterior to the posterior part of the brain (from right to left in the graph), it is possible
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to notice the presence of a causal pathways which originates from the central regions
of the posterior hindbrain and flows thought the root of the spinal cord (clusters 1,
2, 3, 6). Vertices 3 and 6 are, furthermore, the target of many edges originating in
the very peripheral areas of the hindbrain and the midbrain. It is not excluded that
those longer edges could be mediated by further connections in the hindbrain above
or below the imaging plane. It is known that the posterior part of the zebra-fish
hindbrain contains the descending neurons, which constitute the main pathway linking
the brain to the spinal cord, whose cells control the motor reactions of the fish. The
role of the hindbrain as an important area of reception and elaboration of information
is nowadays well assessed [28]. One interesting feature, which can be underlined in
the results obtained with the OR rules 1/5 and 1/6, is the presence of some hindbrain
clusters characterized by high values of betweenness centrality (V6, V17, V12, V11)!.
One of the robust features of the communication pathways from the posterior to the
anterior areas of brain is instead the tendency to spread immediately, towards the
peripheral edges of the hindbrain (clusters 4 and 5), the information coming from the
vertices of the spinal cord. Information is then projected to the frontal regions of brain
(clusters 32, 37, 40, 38) through long edges whose complex activity can be understood
only through a 3D analysis.

4.6 Topological analysis of networks

The possibility to access to full-data brain, given by functional MRI and fluorescence
imaging, has produced, over the last year, many experimental results which account for
brain functional and effective connectivity. They can be obtained by affinity analysis,
causal modeling or simulation.

An emerging behavior, which results to be quite robust among all the trials, is related to
some particular topological features which can be recognized in functional graphs. The
knowledge of these parameters would allow to deal with brain networks as models of a
complex network, of which it is possible to test efficiency, robustness, vulnerability... In
practice, graph topology can be quantitatively quantified by a large variety of measures;
however, it is still not clear which are the most appropriate ones for the analysis of

brain connectivity.

The simplest quantity to access is the degree distribution of the network. The degree

of a node is the number of edges which are entering or exiting from it.

The betweenness centrality of a node measures how many of the shortest paths between all other
node pairs in the network pass through it.
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Random networks are characterized by a symmetrically centered, Gaussian distribu-
tion, indicating that most nodes are connected through an average number of links.
Other more complex networks, instead, show asymmetric distributions, often marked
by fat tails towards high degrees [29].

In particular, some high-definition fMRI studies have suggested that brain networks
(with voxel resolution) could show evidences of scale-free organization [30], which is
reflected in degree distribution which resembles a power law [31] [32]. In other studies,
instead, the power law tails are found to be exponentially truncated [33]. Studies about
the very small (~ 300 neurons) Caenorhabditis elegans brain have revealed, instead,

purely exponential decays [29].

A further well-assessed behavior in brain networks seems to be the small-world ar-
chitecture (see, e.g. [34], [35]). This term was used for the first time by Watts and
Strogatz [36], and since that moment small-worldnesss features have been recognized
in a variety of complex networks belonging to different fields.

A small-world network is characterized by a highly clustered small scale structure
which allows, nevertheless, the presence of short pathways between all the couple of
nodes in the graph. The distance between two randomly picked vertices scales indeed
like ~ log N, where N is the total number of nodes. Clustering occurs when neighbor
nodes which are linked to the same target have a high probability to be connected to
each other. Short pathways, instead, are possible because of the presence of highly

connected vertices (hubs), which create fast connections among different clusterss.

Small-worldness is often measured through the method indicated by Walsh (1999). In
this framework, we define the small-worldness index as the ratio S = /A, where ~ is
the ratio between the clustering coefficient 2 of the given graph and the one computed
on a random network with the same number of edges and nodes, while A is the ratio
between the average path length in the target graph divided by the average path length

of the random one.

For the zebra-fish brain, one known result is the set of parameters emerging from the
functional graphical model designed by Stobb and Peterson [37]. This model, acting
at a cellular level, combines together part of the existent anatomical knowledge and
some stochastic rules.

For such a network, authors found a broad degree distribution, characterized by long

2The clustering coefficient (or transitivity) is a measure of the probability that two adjacent vertices
of a given node are connected. It can been computed ¢/7", where ¢ is the number of triangles connected
to the node and T' the number of triplets centered on the vertex.
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tails but distant from the power law behavior. Moreover, they found a clustering

coefficient significantly larger than one: (4.13 £+ 0.01).

4.6.1 Results

We aimed at extracting the same kind of parameters from the graphs we inferred in our
analysis (full brain results). For all the calculations, we used the tools implemented in
the igraph package of R. For all the measures concerning random graphs, we generated
100 networks with the same procedure, and then we obtained an average value. Since
orientations were seen not to be completely stable by tuning the analysis parameters,
and since some undirected edges are present in the results, we decided to extract

topological parameters from the skeleton of the inferred graphs.

In table 4.1 some topological parameters are reported. They refer to results obtaining
by setting n = 4000. In facts, a weak dependency on n has been observed: the small-
worldness index has been seen to decrease slowly as n increases.

The inferred graphs seem to have a small-worldness index which is, in all the cases,
significantly larger than one. This result is mainly due to a large value for the clustering
coefficient (which would be the same in the directed version of the graph). A quite
robust behavior seem to be the increase of the small-worldness coefficient together with
the number of clusters, as variables become closer and closer to single neurons. This
increasing behavior seems to be compatible, in principle, with the value found in [37],
which refers to isolated cells.

It is important to recall, however, that our results refer to a 2D network, in which

vertical connections with other areas of brain are not included.

The degree distribution, instead, does not show any particular features, and it seems

to be compatible with the Gaussian behavior (see figure 4.15).
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Parameters Small- Clustering co- | Average path
worldness efficient length
index

60 Clusters - OR1/5 | 1.32+0.01 0.123 (0.090) 2.709 (2.612)

60 Clusters - OR 1/6 | 1.69 4+ 0.01 0.160 (0.091) 2.617 (2.652)

80 Clusters - OR1/5 | 1.99 +0.01 0.143 (0.071) 2.723 (2.673)

80 Clusters - OR1/6 | 1.84 +£0.01 0.143 (0.075) 2.669 (2.599)

100 Clusters - OR 1/5 | 2.14 +0.01 0.128 (0.058) 2.878 (2.808)

150 Clusters - OR 1/5 | 2.71 +0.01 0.122 (0.043) 3.010 (2.877)

200 Clusters - OR 1/5 | 3.11 +0.01 0.103 (0.033) 3.034 (2.992)

TABLE 4.1: Topological parameters of the inferred networks. The value between

parentheses refers to the average value for random graphs generated with the same

number of edges and vertices. For the small-worldness index, also an estimation of
the uncertainty is provided.

4.7 Conclusions

Fluorescence imaging of neurons, together with light-sheet microscopy, could be a
precious tool in investigating the connectome structure in vertebrates. Technological
progressions in this field produce a huge amount of data which is now available for
scientists. A rigorous inference environment, such as the one offered by graphical

causal models, can offer reliable results of intuitive interpretation.

In this report we introduced a new algorithm, which aims at making the traditional
approaches more robust against the noise which exists in real data from the biological
world. The 30ff2 algorithm was tested on the fluorescence data deriving from imaging

the brain of the zebra-fish brain, at the Jean Perrin laboratory.

Our approach allowed us to assess simple causality models for small scale structures,
like the hindbrain oscillator and the peculiar four areas which are dislocated among
the midbrain and the cerebellum. The robustness of the results was tested in a second
stage, through a full-brain analysis. In order to fully understand the results obtained

at this larger scale, it would be very useful to extend our analysis also to a 3D scale.

During the experimental trial, scientists of the Jean Perrin laboratory have the pos-
sibility to vary the height at which the fish brain is scanned. By scanning with high
frequency a discrete number of brain layers, it is possible to record the simultaneous

activity of neurons at different depth. Unfortunately, a suitable 3D database is still
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not available, and we could not perform an extended analysis during the duration of

my internship.

One interesting possibility for further investigations is to test the stereotypy of the
results obtained for different individuals of zebra-fish. This kind of approach, suggested
in [38], seems to give access to weak structures which can be hidden in single-fish
analysis. One more tricky task could be to try to test the presence in other species of

vertebrates of the areas of interest we analyzed in this report.

In this study, we analyzed the spontaneous brain activity of zebra-fish. Many more
complex experimental setups, in which the sample fish is stimulated with specific visual
patterns, have been built in the last years [39] [26]. In those cases, connectivity models
for vision have been proposed, but a rigorous inference procedure could allow to test

those hypothesis.

Finally, it is important to underline the discovery of many recursive structures, at small
scale (in the hindbrain oscillator), and at a larger one (in the full-brain results). From
this perspective, it could be useful to test, by applying them to the same dataset pre-

sented here, causality inference methods which exploit time series (DCM approaches).
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